STA303: Artificial Intelligence

Search

Fang Kong
https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE: 0

Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

® & & 2 2 2 0

e & »

SCORE: 0

Video of Demo Mastermind

Search Problems

Search Problems

= A search problem consists of:

g | 1111

= A successor function “N% 1.0 u

\ !
llE”’ 1-0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:
= |s state == Bucharest?

Eforie

[Giurgiu

= Solution?

What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
=" Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing?
120

= States for eat-all-dots?
120x(23°)

Quiz: Safe Passage

" Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
" (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

Search Trees

! _ This is now / start
N 10— E 10
u ! _ Possible futures
T T

= Asearch tree:
= A “what if” tree of plans and their outcomes
» The start state is the root node
= Children correspond to successors
= Nodes show states, but correspond to PLANS that achieve those states
= For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in the
search tree is an
entire PATH in the

state space graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

S
e
e
e e —
b e h r
I — Fa Y
a h r p q f
Y ' S
p q f q c G
] /\
qg ¢ G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
/s
a \b
o O NA
b G a G
N\ N\
a/ G Ié G

/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Eforie

Searching with a Search Tree

Arad

CArad > CFagaras> COradea @mniou vics

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
= Fringe
= Expansion
= Exploration strategy

"= Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

S
@
@ h r
P U NG
B @ p q f
| SN
q G

s>e

S2p

s=>d—2>b

s>d—2>c

s=>d=>e
s2>d—2>e—2>h
s=>gd=>e0 2
s=2>d=2em2raf
s2d2e2>r>f>c
s=2d2eomrafac

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity?

: 4 1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bisthe branching factor m tiers <

= misthe maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
= 1+b+b?2+...b"=0(bM)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
_ m tiers <
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™ nodes

= m could be infinite, so only if we prevent
that

" |sit optimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

~

= Processes all nodes above shallowest solution b 1 node

" Let depth of shallowest solution be s . b nodes

, s tiers <

= Search takes time O(b®) / b2 nodes
* How much space does the fringe take? - / o \ bs nodes

= Has roughly the last tier, so O(b®)

@

" |sit complete? o b™m nodes

= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!

Cost-Sensitive Search

(s (y—s T

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢

C*/e “tiers” <
= Takes time O(b€"%) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢ %)

M)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

" The bad:
= Explores options in every “direction”
®= No information about goal location
Goal
= We'll fix that soon! [Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Contours UCS Pacman Small Maze

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

= All these search algorithms are the
same except for fringe strategies

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid using an actual priority queue, by
using stacks and queues

= Can even code one implementation
that takes a variable queuing object

FEEFFELT

Comparing uninformed search algorithms

3.4.6 Comparing uninformed search algorithms =3
evaluation criteria set

hich don’t check for
are that depth-first
ties are bounded

Figure 3.15 compares uninformed search algorithms in terms of the four
forth in Section 3.3.4. This comparison is for tree-like search versions W
repeated states. For graph searches which do check, the main differences €
search is complete for finite state spaces, and the space and time complexi
by the size of the state space (the number of vertices and edges, [V|+ |E).

Critribn Bregdth- Uniform- Depth-
First Cost First
Complete? Yes! Yes!2 No
Optimal cost? Yes? Yes No
Time o) o®'lC/ey orpm)
Space OB O = ()

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum

depth of the search tree: d is the depth of the sha“l{liowest solution, or is m when there is
£ 7 ko Bt Yy ¢! :

no solution; / is th? G!egth Subetscliniadibic | i

#

